
CREATURES DEVELOPMENT GUIDE

COB BUILDING..1
Event Numbers...2
Object Pointers3
Simple Objects...4
Class Calculator ...7
Coumpound Objects ...8
World Info8
File Formats...8

NORN BODY DATA ...8
It’s all gone horribly wrong…..9

MACRO LANGUAGE GUIDE..10
Object pointer operands................................10
System operands...10
TARG Object operands...11

Values for ATTR ...11
TARG CompoundObject, Vehicle and Lift operands ...11
TARG Creature operands ..12
Environmental operands................................12
Truth test operands ..12
Set activity state..13
system operands ...13
camera, window and scrolling control ...15
carry out a 'bbd:' command ...18
execution-flow commands ...19
Application, tool and system commands21

Event Numbers...21
DDE Data-logging commands................................22
Sound fx etc................................22
Object commands................................23

Values for BHVR ..25
Message meanings...26

Creature commands ...27
EVENT NUMBERS ..31
CLASSIFIER REFERENCE LIST...32

COB BUILDING

A COB file consists of a list of macro strings – scripts and imports –
that will be injected into Albia through the Objector Injector applet
available from http://www.cyberlife.co.uk
A Script is a string of macro commands that will be stored in Creatures
and gets activated at a later time from an owning object, whereas an
Import is a macro string that will be processed straightaway.
The only difference between the structure of Scripts and Imports is that
Scripts always start with the SCRP command (see Macro Language Guide)
which marks the script as belonging to a particular family, genus or
species.

The format for a script is:

SCRP family genus species event,<macro string> endm

Where family genus and species are values in the range 0 – 255
corresponding to the owning object for this script. Event is the event
that triggers this script to activate.
(See Classifier list in Appendix A for a full list of existing objects
and their unique classifier))

A COB will usually make reference to at least one other file – it’s
image file (*.SPR) which contains all the images for this object, but it
can also reference a sound file (*.WAV) so that you can trigger sound
events within your code.
SPR and WAV files are not the sole property of a particular COB, so you
can specify a sound for your new object, for example, that is used by
something else. I.e. The file DROP.WAV is a sound effect for an object
hitting the floor – this can be used by any and all objects as needed.

For example,

scrp 2 6 10 7,doif posb lt limb setv var0 posb setv var1 limb subv var1
var0 mvby 0 var1 endi endm

This is a script for the object with a classifier of [2 6 10] – which is
[simple object / food / coconut pieces]. Its event number shows that this
is the enterscope script (see SCRP command for details of event numbers)

Don’t worry too much about the macro string part of this yet, come back to
it when you feel you know the ins and outs of the language, the important
thing is the format of it that makes it a script to be stored and acted
upon when a condition is right. In this case this script will activate
when the coconut pieces enterscope, and if they are above ground level
they will fall to the ground.

Event Numbers
0 deactivate
1 activate 1
2 activate 2
4 picked up
5 dropped
7 enter scope
9 timer
16 extra Quiescent
17 extra activate 1
18 extra activate 2
19 extra deactivate
22 extra pickup
23 extra drop

These meanings should be fairly intuitive – the only ones that may be unclear are enterscope, timer,
and the extra<something> events.

Enterscope scripts are activated when an object enters the world of Albia – this is usually due to
injection but also happens when Creatures is started up if the object is already in the world.

Timer scripts are activated every n ticks – the value of n can be set or changed within other scripts,
or the import macro.

The Extra <something> scripts are executed on the executor when they chose to do this action to
the owning object. I.e. extra activate 1 is the script for a creature activating 1 that object.

The Pointer <something> scripts are what happens to the on-screen hand when it performs this
action, i.e. pointer pickup scripts usually state that the hand changes to it’s ‘holding’ poses.

50 pointer act 1
51 pointer act 2
52 pointer deactivate
53 pointer pickup
54 pointer drop

(For a full list of event numbers see the SCRP command in the Macro
Commands section).

It is scripts that make up the bulk of a COB file and as they are
injected they will be stored in the scriptorium, overwriting any scripts
for the same classifier.

Imports are usually used to initialise and build an object and place it
in the world – it will then be able to use scripts marked as belonging
to this object, which have been stored in the scriptorium.

Object Pointers

Macro commands usually operate on the target object – TARG – but it is
possible to change TARG to point at a different object using macro
commands. TARG is set as soon as an object is created, so during an
install script TARG will refer to the last object created, and so all
commands that act on TARG will affect this object.
Other useful object pointers are:
OWNR – this is the owner of the script (i.e. the object specified in the
SCRP family genus species event header)
FROM – the object who caused this event to happen (i.e. if Azzam (a
Norn) activates the spinning top, then he is the FROM object as far as
the top is concerned.
NORN – the currently selected Norn from the Norn menu.

To change TARG so that it uses a different object pointer you just
specify; TARG OWNR (for example).
Other commands such as ENUM and RTAR can also change TARG – these are
specified in the Macro Commands section.

Simple Objects

Simple objects are the most common kind of objects in Albia, they all
have certain universal characteristics which make them different from
Compound Objects – namely gravity and the potential to be carried. Both
the hand and creatures can carry simple objects, and when they are
dropped they will fall to the floor.

Simple Objects all belong to family 2, and their classifiers must
reflect this if you want the object to behave like a simple object.
The most useful genus’ of simple objects are listed below;

2. Call button
4. Good herbs
5. Eggs
6. Food
7. Drinks
8. Food
9. Instruments
10.Animals
11.Hot
12.Soothing
13.Small Toys
14.Large Toys
15.Bad Herbs

Below is an example Simple Object COB, with a chunk-by-chunk description
of the scripts and import. The example uses the Bed-time bear from
Object pack 2

This is the import macro code for the Bed-Time Bear

inst

 This will make the rest of the macro run in an instance, this
 makes sure it is not interrupted by other macros already running.

sys: wtop

 This moves the main game window to the top.

vrsn 2

 This checks that the version of Creatures you are running is
 version 1.0.2 or higher. If not the COB will not execute.

new: simp pets 1 24 700 0

 This is the main macro for generating a new object from a sprite
 file.
 NEW: SIMP states that a new simple object is being defined,

 TARG is set to this new object, so all further commands that use
 TARG will apply to this object.
 Pets 1 24 700 0 states that the image(s) for this object are in
 the file called ‘pets.spr’, there is only 1 image and it is at
 position 24 within the SPR file. 700 is the objects image plane –
 how far into the screen the image is to be placed. The ‘0’ on the
 end states that there is no need for a cloned image gallery –
 this is true for nearly every object you will want to create.

setv clas 34408704

 This sets the classifier of the current TARG. The classifier is
 its unique family/genus/species id. This number is calculated
 from the hexadecimal version of the long form classifier (see
 class calculator below)

setv attr 67

 This sets the attributes of the TARG. In this case this sets the
 bed-time bear as being wall-bound and carryable by both hand and
 creature (see Macro Guide for listing of values for ATTR).

Bhvr 0 1

 This sets the behaviour of the TARG. In this case it sets the Bed-
 Time bear as being only activatable by the creatures, not the hand
 (see Macro Guide for listing of values for BHVR).

Mvto 2712 892

 This moves TARG to co-ordinates 2712,892 (near the incubator)

sys: camt

 This moves the camera to point at the current TARG

mesg writ targ 8

 This tells the current TARG to enterscope, this has the effect of
 almost ‘kicking’ the object to life. Without this command the
 object would not react to gravity or its attributes. Objects do
 not have to specifically have an enterscope script defined to
 send this message.

Endm

 Compulsory end of macro command

Ok, so that’s created and initialised an object that now sits near the incubator. But what happens if
it is picked up or activated? That is where the scripts come in. The Bed-time bear only uses two
scripts and these are explained below.

scrp 2 13 9 4

 This marks this script as belong to the object who’s class is [2 13 9] and it is for event 4
 which is “picked up”.

stim writ from 0 255 0 0 40 50 42 50 23 50 34 50

 This stimulates the FROM target (the object/creature that picked up the owner (OWNR))
 with the list of chemicals specified (see Macro Guide for details of this command). What
 this does is stimulate the FROM target with 50 moles of loneliness--, 50 moles of fear--,
 50 moles of sleepiness++ and 50 moles of need_for_pleasure--

endm

scrp 2 13 9 1

 This is the Activate1 script for the Bed-Time Bear.

stim writ from 0 255 0 0 40 50 42 50 23 50 34 50

 This is identical to the picked up script.

setv actv 0

 This marks the object as having finished activating, without this the object would not be
 able to be activated again until it received some form of deactivate signal.

Endm

And that’s it! So now we have a bear that can be picked up by both hand and creature and also
activated by a creature. When it is picked up or activated it makes the creature feel less fearful and
lonely and also sleepy – a comforter for young insecure creatures.

So to summarise:
• A COB is a collection of Scripts, and possibly an Import too.
• Scripts are headed with a classifier and an event, they are placed into the scriptorium and are

called whenever an object with that classifier has that event.
• Imports are injected live and acted upon immediately.
• Any object created in an import needs a classifier, some attributes and behaviour – and a

location to appear if it is a visible object. Remember to tell the object to enterscope after
creation.

Hints, tips and examples

• “edit” in the import macro will place the object in the hand.

Inst vrsn 2 sys: wtop new: simp deth 1 0 300 0 setv clas 34408448 setv attr 71 bhvr 2 1 edit endm
This is the import macro for Solution X from Object Pack 2

• You can use the object variables (OBV0, OBV1 and OBV2) to hold information you want to

persist beyond the running of a particular script.

doif obv0 le 0 gsub hunt endi doif obv0 ge 2 wait 10 gsub hive endi
This is a chunk from the bees enterscope script – basically it checks to see if they have a supply of
nutrients from a plant (obv0 > 0) and if not they go to a subroutine to fly to a plant (hunt). If they are
above a certain level of nutrients then they will return to the hive. Other scripts can modify this
object variable, for example the hive would reset the value to 0 when the bee returned to deposit its
nutrients whereas successful plant maneuvering would increase the count.
Honey Jars also use object variables, but as a ‘use’ counter. When the number of uses is down to
zero the jar is empty and needs re-filling.

Class Calculator

The classifier of an Object is it’s one unique identifier and so calculating the class of an object is
vital – if the class is wrong you may end up overwriting scripts that exist already in the scriptorium.
The classifier list in Appendix A lists all currently known objects and the classes they use. Before
you start to make new objects you must find an appropriate free classifier.
Norns generalise about objects at the genus level so it is important that if you create a new object
it‘s classifier is chosen to fit it into the most appropriate genus, otherwise your creatures will not act
towards it as you might have expected.

The classifier id has 2 forms: informal and formal.

The informal version takes the form family genus species (i.e. 2 13 9
for the Bed-time bear).

The formal version is calculated from the hexadecimal expression of the
informal form. This hexadecimal expression is first arranged as an 8
digit number (the last 2 digits are always 00), and this is then
converted into a decimal number.

For example, Bed-time bear has a classifier of [2 13 9], this is
expressed in a hexadecimal form as [020d0900]. The decimal version of
this is 34408704 – the Bed-Timer bear’s unique classifier in formal
form.
Alexander Laemmle’s COE has a built in class calculator that can turn
the informal form to the formal – it is highly recommended as a
Creatures development tool.

Coumpound Objects

World Info

File Formats

NORN BODY DATA

Two types of file are used to define a norns body – sprite files (.SPR) and attachments (.ATT).

A norns images are built into it’s own SPR file using a series of base variants, a norns genetics
dictate which variant it uses for it’s body, head, arms and legs. These base variants files are
numbered with the following scheme:

L X Y Z .ext

L:
Body
Part

X:
Gender

Y:
Stage of
Life

Z:
Variant

.ext:
SPR or ATT

BODY PART GENDER STAGE OF
LIFE

VARIANT

A: Head
B: Body
C: Left thigh
D: Left shin
E: Left foot
F: Right thigh
G: Right shin
H: Right foot
I: Left humerus
J: Left radius
K: Right humerus
L: Right radius

0: Norn Male
1: Grendel Male
4: Norn Female
5: Grendel Female

0: Baby
1: Adolescent
2: Adult
3: Old

0: Brown mouse
1: White haired pixie
2: Devil/blondie
3: Santa
4: Purple Mountain

So, for example, file H421.SPR is the image file for the right foot of an adult female pixie norn.

It is from these files that the individual images for particular norns are made and complied into one
file that holds all of it’s images (for that stage of life) – this file will have the same number as the
owners moniker (eg. 1kqy.spr). When a norn grows it’s image file is remade, picking the images
from the next stage of life for that variant and gender.

From looking at the existing LXYZ.SPR files that the images are all in an ordered sequence – this
sequence is important to replicate if you want to make your own variant files.

NOTE: The poses are generally arranged in a bottom/back to top/front order.

Head
The images for the heads are arranged in the following order;
EAST 0 1 2 3, WEST 0 1 2 3, FRONT, BACK, HAPPY, SAD, ANGRY
Where 0 1 2 3 are poses in the stated direction.

Body and Limbs
The rest of the body parts are arranged in the following order;
EAST 0 1 2 3, WEST 0 1 2 3, FRONT, BACK
Where 0 1 2 3 are poses in the stated direction.

Attachments
The attachment files are strings of co-ordinates – it is these co-ordinates that enable the image files
to join together smoothly. The co-ordinates are distances into the image file.
Head
For the head the attachment list is 10 sets of co-ordinate pairs – (Center of Head, Mouth) – for
poses in the following order: EAST 0 1 2 3, WEST 0 1 2 3, FRONT, BACK.
Body
For the body the attachment points are more complicated, they are in the following order – (head,
left leg, right leg, left arm, right arm, tail) – where tail is (0,0) for Norns and Grendels.
Limbs
The limbs attac hments are (top of limb, bottom of limb) – so for the humerus the points are
(shoulder, elbow), for the radius they are (elbow, wrist), for the thigh they are (hip, knee), for the shin
they are (knee, ankle) and for the foot they are (ankle, end of foot)

It’s all gone horribly wrong…

So you’ve injected your COB and now Creatures is reporting an error, this could be because of a
syntax error or something more fundamental. Creatures will produce an error message that should
provide useful information about where the error has happened.
Here are some of the common reasons for failures:
• An image (SPR) specified in the import macro does not exist in the creatures\images directory.

The image file is specified in the NEW: commands and if this is not found then you’ll get an
error message as soon this command is acted on.

• A sound (WAV) specified in a macro does not exist in the creatures \sounds directory.
• The sprite offsets stated in a macro command are not valid. For example, ANIM [01234] when

there are only 3 images in this sprite file. This can be very easy to do when you use large sprite
files with many images and the BASE command.

• Wrong TARG. It can be very easy to forget to change TARG back to OWNR after you use a
command such as ENUM or RTAR to chose a new TARG. Without this change of focus back

to the owner all commands will operate on the selected object – and this may be enough to
make the system hang if the chosen object is not intended to carry out the owners commands.

• Spacing errors. All commands are separated by a single space and if this is duplicated or
omitted then the parser will fail.

• Typing errors. Your fingers are flying away at 200 wpm and you try to EUNM across a species.
• Old version of the Creatures.exe. New commands were introduced in versions 1.0.1 and 1.0.2 of

Creatures – any COB that uses these commands will cause an error on earlier versions.

MACRO LANGUAGE GUIDE

 Object pointer operands

TARG - retn curr targ object* as integer
OWNR - default object (owner of script, or pet if DDE)
FROM - obj who caused event leading to this script
NORN - current pet creature
PNTR - pointer object
ATTN - IT - obj that OWNR creature is attending to (may be NULL)

 NOTE: only OWNR's IT can be determined, not TARG's
TCAR – Returns carrier of TARG (may be NULL)
CARR - object that's carrying OWNR (may be NULL)
EXEC - object who EXECuted the tool who owns this
 return (int)Exec; dde macro. NOTE: only valid for DDE

 tools who *know* that they were executed by an object
IT - obj that Owner creature was attending to
EDIT - the contents of the EditObject variable (addr of object being

 placed/repositioned/deleted; EditObject is set by the EDIT macro
 or by shift-clicking an object. Use this rvalue to delete
 selected objects, etc.

OBJP - a pointer to objects that will survive. NOTE: This shouldn’t
 really be set to a Norn – there’s nothing stopping you using it
 but things have the potential to go wrong if OBJP points to a
 norn who then dies.

TOKN XXXX - convert 4 characters into an integer
 e.g. TOKN 1234 = integer '4321'

 System operands

SNDS - sound status

 Bit 0 = Sound on/off

 Bit 1 = Sound mode (foreground only\continuous)
WINW - max allowed view window width (WORLD coords)
WINH - max allowed view window height (WORLD coords)

 TARG Object operands

POSL/POSR/POST/POSB - retn obj's lrtb coords
WDTH/HGHT - retn obj's width/height
LIML/LIMT/LIMR/LIMB - retn obj's limits (e.g. limits of current

room/vehicle)
CLAS - family+genus+sp (Classifier)
FMLY - family (in range 0-255)
GNUS - genus (in range 0-255)
SPCS - species (in range 0-255)
MOVS - MovementStatus (FLOATING, MOUSEDRIVEN, etc)

enum {
 AUTONOMOUS = 0, default - normal obj in world
 MOUSEDRIVEN, if *SIMPLEOBJ* is connected to mouse
 FLOATING, if obj is in fixed place on screen
 INVEHICLE, if obj is carried in vehicle
 CARRIED, if obj is carried by a creature

ACTV - Object's Active flag (INACTIVE=0 ACTIVE=1)
NEID - obj's neural ID# 0-39
ATTR - obj's attributes (INVISIBLE, CARRYABLE, etc)

Values for ATTR
Carryable creature can pick up obj 1
Mousable mouse can pick up obj 2
Activateable can be activated with mouse 4
Container carries other objs (vehicles only) 8
Invisible creatures cant see it 16
Floatable normally floating on screen 32
Wallbound limits movement to current room 64
Groundbound movement only limited by ground
surface

128

NOTE: Wallbound OR Groundbound, can’t be both.

POSE - TARG obj's (and curr Part's) current pose

 TARG CompoundObject, Vehicle and Lift operands

XVEC - vehicle's x mvt vector in 1/256ths pixel
YVEC - vehicle's y mvt vector in 1/256ths pixel
BUMP - vehicle's collision data (bitflags)

 b0=hit left b1=hit right b2=top b3=bottom

 TARG Creature operands

DRIV n - state of creature's Drive# n (hunger etc)
DRV! - creature's MOST PRESSING Drive# retns 0 (pain) if no drives

 pressing Can use in: "DOIF DRIV DRV! GT 128" to test level of
 strongest drive

CHEM n - concentration of a chemical in
SCOR - return scores stored in score.cpp -- Alima
HOUR - return the number of hours elapsed since game started
MINS - return the minutes component of time elapsed
BABY - moniker of child genome if TARG is pregnant
 Useful to modify scripts for pregnant norns. Set to 0 to abort a
 pregnancy (or set to child moniker to make her pregnant)
ASLP - return 1 if creature is asleep
CAMN - Creatures age in mins (abus)
CAGE - Creatures age (0-7)
DEAD - Creature is dead

 Environmental operands

WIND - wind speed/dir near TARG obj (-3 to +3)
TEMP - air temperature near TARG obj (-3 to +3)
ROOM roomnumber edge

 return world l,t,r,b or Type of given room
 where "edge" = 0=l 1=r 2=t 3=b
 or "edge" = 4 returns room Type (INDOORS...)
 Returns 0 if no such room

RMS# - number of rooms defined on map
GND# - number of ground level data on map
GNDW - number of pixels per ground datum
GRND x - ground level at position x (worldx/GROUNDW)

TOTL family genus species

 returns the number of objects in the world who fit this
 description. Family, Genus and/or Species can be zero
 to act as wildcards. Examples:- setv totl 4 2 0 ;retns # grendels

Truth test operands
(return 1 if true, 0 if false)

TOUC objptr1 objptr2 - return 1 if these

 two objects are in contact, e.g. DOIF TOUC TARG OWNR GT 0
 means do if ownr and targ are touching

Set activity state

ACTV - Object's Active flag (INACTIVE=0 ACTIVE1 ACTIVE2)

 system operands

WINW - max allowed view window width (WORLD coords)
WINH - max allowed view window height (WORLD coords)
NORN - set current pet creature

DDE: SCRP family genus species event

 fetch a script from the scriptorium and send it (used by script
 editor for reading out & editing existing scripts

DDE: PUTV RValue
 Send an integer Rvalue

DDE: PUTS [literal string]
 Send a string - useful for debugging macros, or for returning the

 results of macro commands to test the truth of some condition

DDE: GETB 'option'
 get buffer
 gets string and writes to dde buffer

 dde: getb data
 get all creatures data

 dde: getb cnam
 get creature's name

 dde: getb ctim
 get time creature has been alive

 dde: getb monk
 get creature's moniker

 dde: getb ovvd
 returns the following fields (each separated by a "|"

 symbol)for every creature (where creatures are
 separated by a "&" symbol).

 Name
 Moniker
 Sex (either "1" or "2") 1=male 2=female
 Age (in "hours:mins")

 Pregnancy (either "N/A", "No" or <number>)
 Life-Force (either <number> terminated in % or

 "Dead")
 Medical (either "Healthy", "Sick" or "Dead")
 Room (number of room they're in)
 Xpos
 Ypos

DDE: PUTB [literal string] 'option'
 write from string to location determined by option token
 dde: putb [literal string] data
 set all creatures details

 dde: putb [literal string] cnam
 set the creature's name from the string

DDE: PICT - take snapshot of the current subject create a standard

 windows bmp pass file name back to client

DDE: NEGG - Update Number of Natural eggs in world

DDE: HATC - Update Number of Norns in world if egg hatches voluntarily

DDE: LIVE - Update Number of Norns in world if egg hatches voluntarily

DDE: DIED - Update Number of Norns in world if egg hatches voluntarily

DDE: PANC - Alima simple macro to pan camera to creature before the

 owners kit takes a photo

DDE: LOBE - output the locations of the brain lobes of the subject of
 the macro format is " 'x_start'y_start'width'height' " after a
 leading count of the number of lobes based on the 64x48 grid of
 neurones

DDE: GENE - Output the numbers of each of the 12 types of genes

DDE: WORD index - read a word/idea from targ BLACKBOARD's list. Sends

 "###|text|", where ### is the vocabulary slot (WD_xxx) for the
 idea represented by the bbd picture whose index is Index, and
 'text' is the word associated with that picture Used by
 blackboard editor tools to fetch words for editing See "WORD" cmd
 for writing words into object

DDE: CELL lobe cell dentype
 Get statistics about this neurone. Used by brain debug/analysis
 tools. Stores the following data in buffer: Output | State |

 number-of-dens-of-that-type | total Susceptibility | total STW |
 total LTW | total Strength | The dendrite values are totalled
 from all dendrites of the given type in that cell - the magnitude
 will vary according to the number of dendrites, which is given

 in the returned string (so that gauges and graphs can be scaled
 appropriately, or mean values calculated).

carry out a 'sys:' command to control the system (windows, menus,
quitting, etc.)

 SYS: loading and saving

QUIT - Saves world & closes Vivarium
 THIS MUST BE THE ONLY/LAST COMMAND IN THE MACRO
ABRT - Abandons changes to world & closes Vivarium
 THIS MUST BE THE ONLY/LAST COMMAND IN THE MACRO
WRLD [filename.viv] - Opens a new document (world) after saving the

 current one (if any)
 THIS MUST BE THE ONLY/LAST COMMAND IN THE MACRO

 SYS: menu commands

CMND id# - issue an ID_XXX command message to the application. This

 allows macros to activate ANY menu command. Note that command
 will get executed LATER - fn doesn't wait before returning!

 id# is the decimal ID_XXX value - look these up in the resource
 file & list them for users

 camera, window and scrolling control

WPOS x y width height - attempt to position vivarium frame window to

 this size (in pixels) Actual size will be limited to maximum
 view size or size of screen, if neces

SYS: WTOP - Set vivarium's window to be foreground window (useful in
editor tools etc to allow user access to vivarium for
selecting objects etc)

SYS: EDIT l t r b
 Set CDisplay::EditBox, so that a rectangle is drawn on screen at

 the given WORLD co-ordinates. Use "SYS: EDIT 0 0 0 0" to remove
 the box when finished. This macro is used by map editors and
 suchlike to mark out rooms and floor levels during map
 construction

SYS: CMRA x y - Disconnect camera from logged-on creature & position it
 at these world co-ordinates (e.g. when editing map etc.)

SYS: CAMT - moves camera to point at current TARG

SYS: GRND x y - set ground level at position x (worldx/GROUNDW) (see

 GND# and GNDW macros for establishing useful constants)

// carry out a 'new:' command to create a new object of given type
// The 'new:' prefix has been read, so read the next token to determine
what type of object to create.
// NOTE: These commands change the TARG object to that which has just
been created, so that any further commands in the script refer to the
new object and can thus be used to alter other member variables as
required.
// After creating, use EDIT macro to allow user to position object
(unless object was created by another object on the fly)

NEW: SCEN imagefile numimages imagenumber plane
 Create a scenery object
 - imagefile is a 4-byte token representing the filename

 of the image file
 - numimages is the TOTAL number of images IN THAT FILE
 - imagenumber is the image associated with this object
 - plane is the plot plane (0=back, 9000=front)
 example: new: scen SCN1 37 3 9000
NEW: SIMP imagefile numimages imagenumber plane clone
 Create a SimpleObject
 - imagefile is a 4-byte token representing the filename

 of the image file
 - numimages is the number of images BELONGING TO THIS

 OBJECT
 - imagenumber is the offset of the first image associated

 with this object
 - plane is the plot plane (0=back, 9000=front)
 - clone is 0 normally, or 1 to create a cloned image

 gallery. example: new: simp TOYS 3 19 7000 0

 Default object has these properties:-
 attributes: none
 classifier: SIMPLE, no genus or species
 behaviour: dumb (no mouse or creature

 activation)
 events: no scripts
 animation: none
 ALL THESE VALUES MAY NEED TO BE SET BY FURTHER MACRO

 COMMANDS

NEW: CBTN imagefile numimages imagenumber plane
 Create a CallButton object
 - imagefile is a 4-byte token representing the filename

 of the image file
 - numimages is the number of images BELONGING TO THIS

 OBJECT
 - imagenumber is the offset of the first image associated

 with this object

 - plane is the plot plane (0=back, 9000=front)
 example: new: cbtn LIFT 2 19 7000

NEW: COMP imagefile numimages imagenumber clone
 Create a CompoundObject
 - clone is 0 normally, or 1 to create a cloned image

 gallery. example: new: comp ENGN 3 19 0
 Default object has these properties:-
 attributes: none
 classifier: COMPOUND, no genus or species
 parts: none
 hotspots: none
 events: no scripts
 ALL THESE VALUES MAY NEED TO BE SET BY FURTHER MACRO

 COMMANDS MUST use NEW: PART to add one or more parts to
 object (initially has none)

NEW: PART part relx rely imageoffset plane
 Add a part to the current TARG CompoundObject
 Call immediately after NEW: COMP (TARG will point to the

 new object) to add one or more parts to this object
 - part is the part number (0-9 (0=main part))
 - relx,rely are the position of the part RELATIVE to part

 0 (use 0,0 for part 0)
 - imageoffset is the base sprite for this part relative

 to first sprite for OBJECT (not to first sprite in file)
 - plane = plot plane (0-9000)
 After this command, PART is left pointing to this part

 number (for subsequent part-relative commands)

NEW: VHCL imagefile numimages imagenumber
 Create a Vehicle
 For default object properties, see CompoundObject above

NEW: LIFT imagefile numimages imagenumber
 Create a Lift
 For default object properties, see CompoundObject above

NEW: BKBD imagefile numimages imagenumber bkgndcolour chalkcolour
 aliascolour textx texty
 Create a Blackboard (or wordbook or poster)
 - bkgndcolour chalkcolour aliascolour are the colour

 numbers to use for plotting text
 - textx texty are the coords of the place to plot text,

 relative to part 0
 example: new: bkbd BBD1 18 0 240 241 242 4 4
 For default object properties, see CompoundObject above

NEW: CREA moniker sex
 Create a newborn creature.
 MONIKER is the moniker to use to locate the child's genome

 file (this file is generated by: a) the Gene Editor,
 b) a parent creature or C) the NEW: GENE macro, called by

 the Hatchery to breed a unique egg)
 SEX is 1 if the creature is to be male, 2 if it's to be

 female or 0 if the sex is to be determined randomly.
 Normally, sex is randomly determined, but the initial eggs
 may need to be pre-sexed. All the other creature parameters
 are determined by the resultant genome.

 NOTE: the moniker must be supplied as an INTEGER, not a
 string literal, so that, for example, EGG objects can store
 the moniker in OBV0 during incubation.
EGG Objects must have OBV) set to specify the moniker of the
developing creature.

 If I need to store a moniker in a macro as a token, then I
 must use the TOKN rvalue to convert it to integer.

 Examples:
 NEW: CREA OBV0 0 ; create

 creature bred from moniker stored in var
 NEW: CREA TOKN EVE1 0 ; create

 from explicitely named genome

 0=random 1=male 2=female

NEW: GENE mum dad child

 Create a new genome file from mum's and dad's (or just
 mum's if dad=0) genomes, and store the new genome's moniker
 in the LVALUE child.

 eg. "new: gene tokn eve_ tokn adam obv0" will create a
 child of Adam and Eve and store the child's genome moniker
 in TARG's OBV0 variable.

 Use this to conceive a child outside the womb - for
 example from the Hatchery.

carry out a 'bbd:' command

BBD: WORD index ID [text] - Install a word/idea into targ Blackboard's

 list. Used by blackboard editor tools to store edited results,
 and by Object editor when constructing blackboards. See "DDE:
 WORD" cmd for reading words

BBD: SHOW n - draws the current text string text[Obv[0]] onto part0 (if
 n=1) or wipes text from bbd (if n=0)

BBD: EMIT - 'speak' the current word so that nearby norns can read it
 and learn the association between text and concept.

 N determines the type of output:
 If n=0, word will be broadcast as if it had been read,

 i.e. to those creatures looking at bbd, with no visible
 consequences. If n>0 word will be broadcast as if it were a
 sound, i.e. it is sent to all creatures in EARSHOT, and the word
 appears in a speech bubble above the bbd. Use n=0 in timer ticks
 for posters etc. and n=1 when eg. a norn presses a button on a

 language computer to change the picture.

BBD: EDIT n - Allow user to edit the current word (n=1). Prevent further
 editing and relinquish kbd (n=0)

 execution-flow commands

STOP - Stop execution (eg. following error, or before subroutine

 definitions start)
ENDM - Compulsory cmd at end of macro, placed there by Macro constructor
 Macro is terminated and maybe self-destructs only STOP (never

 ENDM) commands may be placed in the body of macro. ENDM is string
 terminator

SUBR label - Identifies a Subroutine. 'label' is a 4-char unique label
 name GSUB takes us to point AFTER SUBR labl, so only reach here
 through normal code flow. Therefore, treat SUBR the same as STOP
 (STOP is therefore not needed before the start of any
 subroutines).

GSUB label - Gosubs to given SUBR label. Often has to scan macro for
 subroutine start, but always remembers the address of the last
 subr visited, so most subrs will execute quickly in loops

RETN - returns from a GSUB

REPS # - repeat the following code # times, up to next REPE (# >= 1)
 NOTE: REPS/REPE may be nested, but loops must NOT be jumped out

 of
REPE - end repeat loop

LOOP - Top of LOOP UNTL statement or LOOP EVER statement (qv)
UNTL val1 EQ val2 - Part of LOOP UNTL statement. Repeat LOOP unless

 condition is true Valid conditions are EQ NE GT LT GE LE BT BF
 LOOPs may be nested, but MUST NOT be jumped out of
EVER - Part of LOOP EVER statement. Repeat LOOP forever (usually a dumb

 thing to do, but OK for eg. some creature's actions, where macro
 is certain to get replaced by another when action changes)

 LOOPs may be nested, but MUST NOT be jumped out of

ENUM family genus species ... NEXT - Iterate through each object which

 conforms to the given classification, setting TARG to point to
 each valid object in turn. Family, Genus and/or Species can be
 zero to act as wildcards.

 Example:
 ENUM 4 0 0 ; for every creature in world
 KILL TARG ; destroy it
 NEXT ; repeat till done
NEXT (part of ENUM...NEXT)

RTAR family genus species
Randomly selects a member from the given classification and sets
it as TARG. Null if no members exist.

RNDV var min# max# - Set a variable V0-V9 to random # between min# &

 max# inclusive (could use with REPS/REPE for random # repeats)
SETV var value# - Set a variable to a constant/variable value

DOIF val EQ val - do next instructions if condition is true, else skip

 to after correct nested ELSE or ENDI
 Valid conditions are EQ NE GT LT GE LE BT BF
ELSE - Hit an ELSE during normal processing (ie. previous DOIF was

 true), so jump from here to corresponding ENDIF, skipping any
 nested DOIFs en route

ENDI - Marks end of a DOIF or DOIF/ELSE statement. Just ignore it.

WAIT ticks - wait for n ticks (approx n/10 secs) before continuing

 with next instruction

ADDV lvalue rvalue ; lvalue = lvalue + rvalue
SUBV lvalue rvalue
MULV lvalue rvalue
DIVV lvalue rvalue
MODV lvalue rvalue
NEGV lvalue ; lvalue = 0 - lvalue
ANDV lvalue rvalue ; lvalue = lvalue AND rvalue
ORRV lvalue rvalue ; lvalue = lvalue OR rvalue

DBUG Rvalue - Performs in an INSTANCE: sends

 RValue as a TRACE message that I can view on the debugger. A good
 use for this is to trace macro sequence of execution. Another use
 is to display data values, and a third is to put a breakpoint
 here, so that I can trace macro execution in code.

DBGV Rvalue - Sends Rvalue to debug window. Same as DBUG but does not
 run in an instance.

DBGM [String] - Does nothing in release version, but debug version
 sends String as a TRACE message that I can view on the debugger.

INST - Make the rest of this macro execute in a single tick, regardless
 of the state of the Repeat variable. Use this instruction at the
 head of DDE macros that must execute a series of instructions
 without being interefered with by FastUpdate() calls, etc.

 For example, any macro that creates an object should use this so
 that the object has been fully initialised before FastUpdate()
 gets to look at it (especially true for CompoundObjects, whose
 Parts don't get created until several instructions after the NEW:
 COMP has occurred)

 Application, tool and system commands

SYS: - Prefix to all system commands, such as SYS: QUIT

APP: - prefix to all applet macros that are NOT dde calls these are

 macros that control the applets rather then talk to them
SCRP family genus species event - All the rest of this macro is to be

 installed in the system as a Script, making it available as a
 new/replacement script for a given type of object and a given
 event. This command should normally be the first in the macro.

 DDE programs can thus install new scripts into the world by
 'executing' the required script, heading it with a SCRP command.

 Family, genus and species are numbers that identify the type of
 object - they relate to the top three bytes of the object's
 Classifier.
 NOTE: each of these parameters is a BYTE value (0-255), rather
 than the absolute value for that byte ie. A SimpleObject's Family
 param is 2, not 0x02000000.

 Event is the number of the event that will invoke this
 script: 0=deactivate, 1=act1, 2=act2, etc.

 The Species param can be zero - this means that this script
 applies to ALL objects of this family+genus, if they don't have a
 script that identifies them exactly. Likewise, both Genus and
 Species can be zero, meaning that the script is a default script
 for all members of that family.

Event Numbers
0 deactivate
1 activate 1
2 activate 2
4 picked up
5 dropped
7 enter scope
9 timer
16 extra Quiescent
17 extra activate 1
18 extra activate 2
19 extra deactivate
22 extra pickup
23 extra drop

These meanings should be fairly intuitive – the only ones that may be unclear are enterscope, timer,
and the extra<something> events.
Enterscope scripts are activated when an object enters the world of Albia – this is usually due to
injection but also happens when Creatures is started up if the object is already in the world.
Timer scripts are activated every n ticks – the value of n can be set or changed within other scripts,
or the import macro.
The Extra <something> scripts are executed by the executer when they chose to do this action to
the owning object. I.e. extra activate 1 is the script for a creature activating 1 that object.

50 pointer act 1
51 pointer act 2
52 pointer deac
53 pointer pickup
54 pointer drop
64 involuntary action 0
65 involuntary action 1
66 involuntary action 2
67 involuntary action 3
68 involuntary action 4
69 involuntary action 5
70 involuntary action 6
71 involuntary action 7
72 Creature death scipt

SCRX family genus species event

 remove any script answering to this description from the
 Scriptorium (eg. used by ObjEd to delete scripts that are no
 longer needed)

TOOL [fsp] [menutext] [helptext] glyph#
 Issued by a DDE tool app to register itself with the toolbar.

ROOM room# l t r b type
 Set up a room on map. room# is the room to set up (may be a new

 room) l t r b = room rectangle in world coords type = 0=INDOORS
 1=SURFACE 2=UNDERSEA

 DDE Data-logging commands

DDE: other data
 DDE: prefix means that some stuff should be written out

 to the data-logging buffer (at DDEOut). Operand after the DDE:
 specifies what to send

 Sound fx etc

SNDF function - Set the sound status
 Function = ON__ - Sound on
 OFF_ - Sound off
 FORE - Sound only plays when
 application is in foreground
 CONS - Sound plays all the time

SNDV [filename WITHOUT.WAV suffix]
 Now replaced by SNDE (sound effect) which doesn't require []

 This has been kept for back compatibility/ Play sound if TARG obj
 is visible on screen Change volume according to distance from
 screen

SNDE filename (four letter token)
 Play sound effect if TARG obj is visible on screen. Change volume

 according to distance from screen. This replaced SNDV and doesn't
 require []'s

SNDQ filename (four letter token) delay
 Play sound effect after a short delay if TARG obj is visible on

 screen Change volume according to distance from screen
SNDC filename (four letter token)
 Start controlled sound if TARG obj is visible. Change volume

 according to distance from screen

SNDL filename (four letter token)
 Start controlled loop if TARG obj is visible. Change volume

 according to distance from screen
STPC - Stop any controlled sound currently playing
FADE - Fade out any controlled sound currently playing
PLDS token - Preload sound into sound cache if TARG obj is visible or

 just off screen

 Object commands

TARG Rvalue - Set Targ object pointer to point at given object
 TARG OWNR - (re)set Targ to point at default object

 (macro owner, or pet if DDE)
 TARG FROM - set Targ to point at cause of this event

 (no change if isn't an event macro)
 TARG NORN - set Targ to point at the current Pet

NEW:
 Create a new Scenery, SimpleObject, CompoundObject or

 Creature

KILL rvalue
 Delete the object whose address is rvalue, eg. "kill

edit" removes any object that's been shift-clicked on
(EditObject), "kill targ"

 deletes the target object.
 THIS INSTRUCTION MUST BE LAST ONE IN MACRO IF IT KILLS

 THE OWNER OF THAT MACRO!
EDIT
 Attach TARG obj to mouse (even if it's not carryable) so

 that user can position it.
 Used by Object Editor to allow NEW: objects to be

 positioned
 Do this by setting the EditObject variable in VivDoc.cpp.

This causes the TaskSwitcher to make this object follow the
mouse until a mouse button is pressed.

ANIM [123432R] - objects

ANIM [010203R] - creatures
 Start animation of DEST object/part using these poses
 CREATURE: poses refer to entries in the pose table; anims

 are TWO-digit numbers fr creatures

OVER
 Wait until the current DEST object's animation is over,

before continuing. CARE: anims ending in 'R' will never
stop. COMPOUND, it's the current PART's anim that's
checked.

POSE n
 stop any animation of DEST obj's entity, and set it to

POSE# n (pose, not abs image#. ie. same effect as using
ANIM [n])

 CREATURE: Will continue with next instruction ONLY when
 target pose has been reached.

PRLD [1234]
Pre-load image cache with these poses, to make for smoother
animation later CREATURE: n/a

BASE n
 Specify the base image number for this object/part. Can

be used to allow anims from large tables of images, by
moving base sprite# around table. Value is an ABSOLUTE
index into this object's image

 gallery. CARE: no error checks!

Because the ANIM command for objects uses a single digit for image
numbers BASE is needed if you are using a sprite file with a lot of
entries.
The example below is from the Cloud Butterfly COB and shows the use of
the BASE command – in all other ways the two subroutines below are
identical.

subr left
base 0 anim [0123] over
anim [450]
mvby -3 0
retn

subr rite
base 6 anim [0123] over
anim [450]
mvby 3 0
retn

PART part#
 Set part# for future actions on CompoundObjects, eg.

 Animations

MVTO x y
 move object to abs locn and redraw

MVBY xd yd
 move object by relative amount and redraw

BHVR click creature
 Set SimpleObject's reactions to clicks by mouse and

 activation requests from creatures.

Values for BHVR
Click - user interaction Touch - creature interaction
0 clicks have no effect 0 creature can take no actions
1 monostable: clicks activate, further

clicks have no effect until object is
inactive again.

1 act1

2 retriggerable monostable: clicks
activate even if already active

2 act2

3 toggle: 1st click activates, 2nd
deactivates again

3 act1 act2

4 cycle: 1st click activate1, 2nd
activate2, 3rd deactivate

4 deac

 5 act1 deac
 6 act2 deac
 7 act1 act2 deac

TICK #ticks
 Set the TARG object's timer to given rate.
 TIMER scripts will be executed whenever this timer times

 out.
 Set to 0 to disable TIMER events

SPOT spot# left top right bottom
 Set up a CompoundObj hotspot, for users/creatures to

click on (See KNOB for how to assign a hotspot to an
activation function)

 spot# = hotspot# 0-5, ltrb = coords of hotspot on object
 RELATIVE to part[0]

 Set ltrb to -1 -1 -1 -1 to remove a hotspot

KNOB activationfn# hotspot#
 Attach a CompoundObj's activation function (ACT1=0

 ACT2=1...) to a given hotspot
 (eg. to make hotspot# 0 into a Deactivate button, use

KNOB 2 0) set KNOB activationfn -1 to disable an action
button

knobs 0-2 are act1,act2,deac for creature; knobs 3-5 are act1,act2,deac for hand.

CABN l t r b
 Set the relative coords of TARG VEHICLE, LIFT or

 AIRCRAFT'S Cab (cabin rectangle)

GPAS - get passengers

DPAS - drop passengers

SPAS vehicle creature - get this particular passenger
 Load all nearby creatures into TARG VEHICLE or LIFT, or

drop them again. Normal ACTIVATE# scripts for vehicles
should call GPAS and normal DEACTIVATE scripts for vehicles
should call DPAS. Any vehicle's COLLISION script that

 effectively deactivates the vehicle on collisions should
 also call DPAS.

 These functions are at the discretion of the designer, in
 case special behavior is reqd.

 SPAS is used to get a single creature into a vehicle; the
first param is explicit because eggs use this command to
get a given creature into the incubator at hatch time.

BBD:
 Prefix for various blackboard-related commands

MESG SHOU message
 - "shout" send message to all

 creatures that can hear OWNR obj
MESG SIGN message
 - "signal" see OWNR
MESG TACT message
 - "tactile" are in contact with OWNR
MESG WRIT object message
 - "write" send message to a specific object
 Object is a pointer to an object (TARG, OWNR, FROM or

 NORN)

Message meanings

0 Activate 1 4 Pick Up
1 Activate 2 5 Drop
2 Deactivate 8 Enterscope

These are the messages that you can send between objects and creatures,
objects/objects or creatures/creatures.

STM# SHOU stimulus#
STM# SIGN stimulus#

STM# TACT stimulus#
STM# WRIT object stimulus#
 Emit one of the hard-wired stimuli (STIM_DISAPPOINT, etc.)
 Stimulus# is a value from 0 to NUMSTIMULI-1, and refers

to one of the built-in stimuli in the stimulus library.
Often this command will be enough, but if a more

 specialised stimulus is required, use the STIM command
 (see below)

 Object is a pointer to an object (TARG, OWNR, FROM or
 NORN)

STIM SHOU list of stimulus items
STIM SIGN list of stimulus items
STIM TACT list of stimulus items
STIM WRIT object list of stimulus items
 Emit a specialised stimulus to a given creature or nearby

creatures If one of the built-in stimuli will do, use the
STM# command (above), but if none of these is suitable,
specify the exact stimulus data using this cmd.

 Object is a pointer to an object (TARG, OWNR, FROM or NORN)
 "list of stimulus items" refers to a list of values, as follows:

 Significance; - amount to nudge significance neurone by
 Input; - sensory lobe neurone# (or 255 if none)
 Intensity; - Amount to nudge input neurone by
 Features; - bit record of features
 chemical0,amount0, - 4 chemicals to emit into bloodstream

(0==unused)
 chemical1,amount1, - with amounts to emit (0-255 moles)
 chemical2,amount2,
 chemical3,amount3

 Creature commands

 All these commands apply to the TARG object, which must

be a creature TAKE CARE to return TARG to pointing at OWNR
before using these commands after changing TARG (eg. to IT
(ATTN)

FIRE x y amount
 Fire the neurone whose position is XY (used by PET

scanner, etc.) 'amount' is the signal strength - 0-255 is a
'safe' signal, >255 is lethal to the cell and 'kills' it
(useful for brain surgery!)

 NOTE: KILLING CELLS IS NOT YET IMPLEMENTED
TRIG lobe cell amount
 Fire this particular neurone
CHEM chemical amount
 Add this much chemical n to TARG's bloodstream

APPR
 Approach IT.
 Choose a walking gait according to chemo-receptors, then

start walking towards _IT_. Continue with next instruction
when you are WITHIN REACH

WALK
 Walk indefinitely.
 Choose a walking gait according to chemo-receptors, then

 start walking.
 If extraspective, you'll continuously walk towards _IT_,

but this command is primarily for introspective walking,
such as "wander east", so creature will walk in current
direction using the given gait.

TOUC
 Reach out and touch IT.
 Normally preceeded by APPR macro. Continue with next

 instruction when you have successfully touched IT (or
 when you are as close as you are going to get).

 If total failure (no IT, or IT gone below floor level)
then the present action schema is suppressed (action has
failed) and the macro is terminated.

POIN
 Point to IT.
 As for TOUC, but creature reaches out to object with head

facing camera. This can be used to allow a creature to ask
the user what an object is called,

 for example. See TOUC for usage.

AIM: act
 Set the target point on the IT object for subsequent APPR

 and/or TOUC commands
 VALUES FOR ACT
 0: act1 1: act2 2: deac

SAY# n
 Speak word n in a speech bubble, and send that word as a

 SIGNAL message to all creatures in earshot
SAY$ [string]
 Speak given string in a speech bubble (no signals sent)
SAYN
 Speak your most pressing need
IMPT n
 Signify how important this (voluntary) action is (how

unlikely it is that another action will override this one
before it has finished).

 value is the amount that gets used to nudge the current
 decision neurone. This instruction should be used at the
 start of EVERY creature action macro, and may be used
 within a macro if the importance changes during a later

 phase. Values should be low numbers!
DONE
 Creatures only. This voluntary or involuntary action has

 been completed. For voluntary actions: resets the decision
 neurone to force creature to make a new decision, and
 ensures current importance is zero.

 Put this cmd at the end of any TRANSIENT voluntary action
 (eg. act1 but not walkeast)

 and after EVERY involuntary action
LTCY action mindelay maxdelay
 Set the Latency for the TARG creature's given Involuntary

 Action (0-7).
 Only relevant to Involuntary Action scripts (Creature's

 relex actions).
 Prevent this action repeating for at least DELAY*4 ticks
 (DELAY is in 4/10th sec intervals, as decision-making fn

 gets called only every 4 ticks, and is a random number
 between min and max).

 This command may be called at the end of an involuntary
 action script to prevent reactivation until the chemical
 which triggered the action has subsided. A random latency
 can be useful for actions such as "languish due to lack of
 strength", to make them OCCASIONALLY override willed
 actions.

ASLP 0/1
 Go to sleep (close eyes, become insensible to some
 stimuli) or wake up.
 Instruction doesn't change pose - macro must do this
 after ASLP instr.
 Any change of action will automatically wake creature up
 again.

DREA max
 Start dreaming, ie. start processing any pending

 instincts, instead of receiving sensory data from
 environment. Normally, this should be done

 only during deepest sleep phase, plus during embryology,
 while the creature is in limbo before hatching. Once
 activated, MAX pending instincts will be processed, then
 the dream state switches off automatically.

 Each instinct takes about 5 secs, during which the
 creature is insensible.

 Set MAX to a suitable value - too low and insincts take
 too many sleeps to get processed, too high and creatures
 remain insensible for too long

DROP
 Drop any object(s) that you are carrying.

MATE
 Only relevant to male creatures:

 Pass any waiting sperm to female (if IT is a female of
 same genus).

 Female will conceive if she's in the right condition
 (fertile & receptive)

SNEZ
 TARG creature sneezes - infect nearby creatures or

 environment with any live bacteria he has in him
SLIM
 Set the limits of the target object
MCRT x y
 Move a carrot to x y
 to x,y and moves the camera with it
TELE x y
 Teleport all of the vehicles occupants
 to x,y and moves the camera with it
EVNT object
 Add an object onto the Event bar
 (either a newborn, and egg or a death)
RMEV object
 Remove an event from the event bar

 // do all asynchronous instrs at once, but let others execute at

// one instr per tick, UNLESS Immediate is set, in which case ALL
// instrs get executed in a single pass

VRSN number
 only run this script if Creatures build ID is equivalent or

higher. Ie. If macro starts “VRSN 2” then Creatures must be
version 1.0.2 or higher to run this script.

VRSN
 Lvalue to get Creatures Build ID. Ie. Setv var1 vrsn

EVENT NUMBERS

0. deactivate
1. activate 1
2. activate 2
3. hit
4. picked up
5. dropped
6. collision
7. enter scope
8. Leave scope
9. timer
16. extra Quiescent
17. extra activate 1
18. extra activate 2
19. extra deactivate
20. extra seek
21. extra avoid
22. extra pickup
23. extra drop
24. extra say need
25. extra rest
26. extra go west
27. extra go east
28. extra undef 1
29. extra undef 2
30. extra undef 3
31. extra undef 4
32. intro Quiescent
39. intro drop
40. intro say need
41. intro rest
42. intro go west
43. intro go east
44. intro undef 1
45. intro undef 2
46. intro undef 3
47. intro undef 4
50. pointer act 1
51. pointer act 2
52. pointer deac
53. pointer pickup
54. pointer drop
64. involuntary action 0
65. involuntary action 1
66. involuntary action 2
67. involuntary action 3
68. involuntary action 4
69. involuntary action 5
70. involuntary action 6
71. involuntary action 7
72. Creature death scipt

CLASSIFIER REFERENCE LIST

Last updated on: Sunday,
24.08.1997

FAMILY GENUS SPECIES SPR
File and
offset

IMAGE
PLANE

0 Special / Override
 0 Override Scripts For

IT=CREATURE

1 System Macros (use 1st 4
event#s)

 1 Scenery Object
2 Simple Object
 1 System
 1 Mouse Pointer SYST

0-8

 2 Speech Bubble SYST
9-12

 3 Norn Indicator INDI
 2 Call Button
 1 Callbutton 750
 3 Invisible
 1 Smoke SMOK 250
 2 Water Fall FALL 0
 3 Flames FLAM 50
 4 Wave 9000
 5 Drop DROP 1
 6 Tree House Flags FLAG 4000
 7 Windsock ANIM

16-23
0

 8 Vane LTVN 0
 9 Garden Invisible
 10 Jungle Invisible
 11 Cave Invisible
 12 Dome Invisible
 13 Sleep Indicator 9000
 14 Cage control box CBOX

 211 Grendel Guard

(S.Linkletter)

 4 Good Herbs
 9 Feverfew HERB

0-2
0

 10 Morning Glory HERB
3-5

0

 11 Tomato HERB
6-8

0

 13 Campanula HERB 0

12-14
 14 Beelocanth FLWR

0-9
450

 5 Eggs
 2 Egg For Incubator EGGS 90
 4 Grendel Egg GREG
 6 Grendel Egg Layer GREG 500
 6 Food
 1 Cheese FOOD

3-5
750

 2 Honey 50
 3 Carrot 500
 4 Lemon FOOD

0-2
0

 5 Pudd HOLI 0-
2

750

 6 Turkey HOLI 3-
5

750

 7 Breakable Honey Jars JARS 50
 8 Bouncy Carrots PARS 500
 9 Beelacanth Fruit FLWR

10
450

 10 Coconut Flesh COCO
6-8

 12 Beer (S.Kuske)

 112 Chocolate Bar

(S.Kuske)

 113 Spaghetti (S.Kuske)
 114 Apple (S.Kuske)
 116, 117 Cooking Pot

(S.Kuske)

 118 Chips (S.Kuske)
 120 Icecream (S.Kuske)
 198 Electric Fan remover

(S.Kuske)

 209 Chocolate Bunny
(S.Linkletter)

 210 Strained Carrots
(S.Linkletter)

 211 Grendel Guard
Remover (S.Linkletter)

 212 Grendel-X
(S.Linkletter)

 220 Milkshake remover
(S.Kuske)

 245 Strawberry Cake
(S.Kuske)

 248 AntiBodies 4567

(A.Laemmle)

 249 AntiBodies 0123

(A.Laemmle)
 250 Power Infusion

(A.Laemmle)

 252 Hyper Tomato
(A.Laemmle)

 253 Selector Lemmon
(A.Laemmle)

 254 Fruit Of The Doom
(A.Laemmle)

 255 Hyper Carrot
Dispensor (A.Laemmle)

 7 Drinks 1 Coffee KITC 4-

7
750

 2 Hootch HTCH 750

 99 Coffee Cup

(A.Laemmle)

 114 Beer (S.Kuske)
 212 Pink Lemonade

Bottle (S.Linkletter)

 225 Milkshake (S.Kuske)

 8 Food Venders 1 Hive HIVE 1
 2 Still 50
 3 Vending Machine DISP 100
 4 Beelacanth Seed

launcher
LAUN 600

 79 TV remover (S.Kuske)
 80 Another TV !

(S.Kuske)
ANTE,

 99 Coffee Machine

(A.Laemmle)

 200 Electric Fan

(S.Kuske)

 212 Pink Lemonade
Dispenser (S.Linkletter)

 225 Milkshake (S.Kuske)

 9 Instruments 1 Harp INST

0-9
500

 2 Drum INST 10 3500
 3 Trumpet INST

19-22
900

 4 Pianola INST
23-28

500

 5 Jukebox INST
30-37

50

 6 Jukebox back INST 29 50

 10 Animals 1 Fish ANIM
24-33

50

 2 Seahorse ANIM 0-
7

0

 3 Bees BEES,
BEEZ

445

 4 Humming Bird ANIM
38-41

0

 5 Flying Bird ANIM
34-37

0

 6 Nesting Bird 0
 7 Jellyfish ANIM 8-

15
0

 9 Goldfish Bowl PETS

0-9
0

 10 Snowman HOLI
25-31

750

 11 Reindeer HOLI
15-24

750

 12 Bug BUGS 400
 13 Cave Fly MOSQ 8000
 14 Catapiller CATA

0-28

 15 Butterfly CATA
29-32

 16 Venus Fly trap
 17 Crow

 212 Dragon Fly

(S.Linkletter)

 11 Hot 1 Kitchen Fire PETS

15-20
0

 2 Cannon CAN2
2-8

200

 3 Firework Sparks
 4 Weed Killer MIST DETH

1-14

 5 Bug Spray MIST
 6 Crystal Ball field CRYS

2-9

 212 Space Heater

(S.Linkletter)

 12 Soothing 1 Shower QTOY 4000
 2 Clock CLOK 0
 3 Tree HOLI

7-9
750

 4 Grendel Scarer Mist SCAR
3-20

 210 Teddy Bear

(S.Linkletter)

 13 Small Toys 1 Spinning Top STOP 4500
 2 Ball BALL 4500
 3 Radio AUVI

22-25
750

 4 Bouncing Heads 4500
 5 Ming Vase 100
 6 Firework
 7 Bug Spray Bottle
 8 Weed Killer Bottle DETH 0
 9 Bed-Time Bear PETS

24

 10 Coconut Husk COCO
0-5

 99 TV (A.Laemmle)
 110, 111 Remote

controlled car (S.Kuske)

 119 Grendel killing

machine (S.Kuske)

 240 Power Pulsar

Infusion (A.Laemmle)

 14 Large Toys 1 Pop-Up-Helicopter HELI 600
 2 Robot NTOY

0-7
500

 3 Jack-In-The-Box NTOY
8-16

900

 4 Crystal Ball CRYS
0-1

 6 Grendel Scarer SCAR
0-1

 15 Bad Herbs 1 Pyrethium BHRB

0-2
0

 2 Nightshade BHRB
3-5

0

 3 Ugly Tomato BHRB
6-8

0

 4 Gentian BHRB
9-11

0

 5 Deathcap MUSH 0
 6 Baobab HERB

9-11
0

 7 Laburnum HERB
12-15

0

 8 Holly HOLI
10-12

750

 9 Mistletoe HOLI
13-14

750

 15 Grendel Machine

Toxin (S.Kuske)

3 Compound object 1 Vehicle 1 Teleporter 600
 2 Shelf
 3 Incubator INCU 100
 4 Cannon 200
 6 Submarine SUBM 4000
 7 Island Boat BOAT 4000
 9 Cable car CABL 4000
 10 Cart CART 4000
 11 Pull Raft RAF2 4000
 12 Underground Raft RAF2 4000
 13 Restraining Cage CAG2

 212 Soap Bubble

(S.Linkletter)

 2 Lift 1 Cane lift LIFT 1000

 3 Computer 1 Computer COMP 0

 208,209,210,211,212

Encyclopedia Nornica
(S.Linkletter)

 4 A/V equipment 1 Slide Projector AUVI

0-21
0

 1 JukeBox 0

 5 Cannon 1 Cannon CAN2

0-1
200

4 Creature 1 Norn 0 Scripts For Both

Sexes

 1 Scripts For Males
 2 Scripts For Females

 2 Grendel 0 Scripts For Both

Sexes

 1 Scripts For Males
 2 Scripts For Females

 4 Side (add-on sp.) 2 Scripts For Females
 1 Scripts For Males
 0 Scripts For Both

Sexes

